
Unformatted input/output operations In C++

 In this article, we will discuss the unformatted Input/Output operations In C++.

Using objects cin and cout for the input and the output of data of various types is
possible because of overloading of operator >> and << to recognize all the basic
C++ types. The operator >> is overloaded in the istream class and operator << is
overloaded in the ostream class.
The general format for reading data from the keyboard:

cin >> var1 >> var2 >> …. >> var_n;

 Here, var1, var2, ……, varn are the variable names that are declared
already.

 The input data must be separated by white space characters and the
data type of user input must be similar to the data types of the
variables which are declared in the program.

 The operator >> reads the data character by character and assigns it to
the indicated location.

 Reading of variables terminates when white space occurs or character
type occurs that does not match the destination type.

Program 1:

 C++

// C++ program to illustrate the
// input and output of the data
// entered by user
#include <iostream>
using namespace std;

// Driver Code
int main()
{
 int data;
 char val;

 // Input the data
 cin >> data;
 cin >> val;

 // Print the data
 cout << data << " " << val;

 return 0;
}

Output:

https://www.geeksforgeeks.org/basic-input-output-c/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/overloading-stream-insertion-operators-c/
https://www.geeksforgeeks.org/c-stream-classes-structure/
https://www.geeksforgeeks.org/operator-overloading-and-operator-in-a-linked-list-class/

Explanation: In the above program, 123 is stored in the variable val of integer,
and B is passed to the next cin object and stored in the data variable of
character.

put() and get() functions:
The class istream and ostream have predefined functions get() and put(), to
handle single character input and output operations. The function get() can be
used in two ways, such as get(char*) and get(void) to fetch characters including
blank spaces, newline characters, and tab. The function get(char*) assigns the
value to a variable and get(void) to return the value of the character.
Syntax:
char data;

// get() return the character value and assign to data variable
data = cin.get();

// Display the value stored in data variable
cout.put(data);

Example:
char c;

// directly assign value to c
cin.get(c);

// Display the value stored in c variable
cout.put()

Program 2:

 C++

// C++ program to illustrate the
// input and output of data using
// get() and puts()
#include <iostream>
using namespace std;

// Driver Code
int main()
{
 char data;
 int count = 0;

https://www.geeksforgeeks.org/cin-in-c/
https://www.geeksforgeeks.org/c-stream-classes-structure/
https://www.geeksforgeeks.org/gets-is-risky-to-use/
https://www.geeksforgeeks.org/puts-vs-printf-for-printing-a-string/

 cout << "Enter Data: ";

 // Get the data
 cin.get(data);

 while (data != '\n') {
 // Print the data
 cout.put(data);
 count++;

 // Get the data again
 cin.get(data);
 }

 return 0;
}

Output:

getline() and write() functions:

In C++, the function getline() and write() provide a more efficient way to handle
line-oriented inputs and outputs. getline() function reads the complete line of
text that ends with the new line character. This function can be invoked using
the cin object.
Syntax:
cin.getline(variable_to_store_line, size);

The reading is terminated by the ‘\n’ (newline) character. The new character is
read by the function, but it does not display it, instead, it is replaced with a NULL
character. After reading a particular string the cin automatically adds the
newline character at end of the string.
The write() function displays the entire line in one go and its syntax is similar to
the getline() function only that here cout object is used to invoke it.
Syntax:
cout.write(variable_to_store_line, size);

The key point to remember is that the write() function does not stop displaying
the string automatically when a NULL character occurs. If the size is greater
than the length of the line then, the write() function displays beyond the bound
of the line.
Program 3:

 C++

https://www.geeksforgeeks.org/getline-function-character-array/
https://www.geeksforgeeks.org/c-plus-plus/
https://www.geeksforgeeks.org/getline-string-c/
https://www.geeksforgeeks.org/fine-write-void-main-cc/
https://www.geeksforgeeks.org/endl-vs-n-in-cpp/
https://www.geeksforgeeks.org/difference-between-null-pointer-null-character-0-and-0-in-c-with-examples/
https://www.geeksforgeeks.org/difference-between-null-pointer-null-character-0-and-0-in-c-with-examples/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20210401113733/Program2InputOutput.jpg

// C++ program to illustrate the
// input and output of file using
// getline() and write() function
#include <iostream>
#include <string>
using namespace std;

// Driver Code
int main()
{
 char line[100];

 // Get the input
 cin.getline(line, 10);

 // Print the data
 cout.write(line, 5);
 cout << endl;

 // Print the data
 cout.write(line, 20);

 cout << endl;

 return 0;
}

	Unformatted input/output operations In C++
	put() and get() functions:
	getline() and write() functions:

